8.6 The Trapezium Rule

练习题

Exercise 8F - 梯形法则应用

1. 基础梯形法则计算

Copy and complete the table below and use the trapezium rule to estimate \(\int_1^3 \frac{1}{x^2 + 1} dx\):

x11.522.53
y = \(\frac{1}{x^2 + 1}\)0.50.308?0.138?
提示:先完成表格,然后使用梯形法则公式计算。
答案:
完成表格:
x11.522.53
y = \(\frac{1}{x^2 + 1}\)0.50.3080.20.1380.1
h = (3-1)/4 = 0.5
Area = ½ × 0.5 × (0.5 + 2(0.308 + 0.2 + 0.138) + 0.1)
= 0.25 × (0.5 + 1.292 + 0.1) = 0.473

2. 平方根函数积分

Use the table below to estimate \(\int_1^{2.5} \sqrt{2x - 1} dx\) with the trapezium rule:

x11.251.51.7522.252.5
y = \(\sqrt{2x - 1}\)11.225??1.732?2
提示:先完成表格,然后使用梯形法则公式计算。
答案:
完成表格:
x11.251.51.7522.252.5
y = \(\sqrt{2x - 1}\)11.2251.4141.5811.7321.8712
h = (2.5-1)/6 = 0.25
Area = ½ × 0.25 × (1 + 2(1.225 + 1.414 + 1.581 + 1.732 + 1.871) + 2)
= 0.125 × (1 + 15.646 + 2) = 2.331

3. 三次方根函数积分

Copy and complete the table below and use it, together with the trapezium rule, to estimate \(\int_0^2 \sqrt{x^3 + 1} dx\)

x00.511.52
y = \(\sqrt{x^3 + 1}\)11.0611.414??
提示:先完成表格,然后使用梯形法则公式计算。
答案:
完成表格:
x00.511.52
y = \(\sqrt{x^3 + 1}\)11.0611.4141.8033
h = (2-0)/4 = 0.5
Area = ½ × 0.5 × (1 + 2(1.061 + 1.414 + 1.803) + 3)
= 0.25 × (1 + 8.556 + 3) = 3.139

4. 6个梯形的积分计算

Use the trapezium rule with 6 strips to estimate \(\int_1^3 \frac{1}{\sqrt{x^2 + 1}} dx\).

提示:h = (3-1)/6 = 1/3,计算x = 1, 4/3, 5/3, 2, 7/3, 8/3, 3处的y值。
答案:
h = (3-1)/6 = 1/3
x14/35/327/38/33
y = \(\frac{1}{\sqrt{x^2 + 1}}\)0.7070.60.5140.4470.3930.3510.316
Area = ½ × (1/3) × (0.707 + 2(0.6 + 0.514 + 0.447 + 0.393 + 0.351) + 0.316)
= (1/6) × (0.707 + 4.61 + 0.316) = 0.939

5. 分数函数积分与精度分析

a) Copy and complete the table below and use the trapezium rule to estimate the area bounded by the curve, the x-axis and the lines x = -1 and x = 1.

x-1-0.6-0.20.20.61
y = \(\frac{1}{x + 2}\)10.714??0.385?

b) State, with a reason, whether your answer in part a is an overestimate or an underestimate.

提示:先完成表格,然后分析曲线形状判断精度。
答案:
a) 完成表格:
x-1-0.6-0.20.20.61
y = \(\frac{1}{x + 2}\)10.7140.5560.4550.3850.333
h = (1-(-1))/5 = 0.4
Area = ½ × 0.4 × (1 + 2(0.714 + 0.556 + 0.455 + 0.385) + 0.333)
= 0.2 × (1 + 4.22 + 0.333) = 1.111

b) 这是一个高估值,因为曲线y = 1/(x+2)在区间[-1,1]上是凸的(向上弯曲),梯形完全在曲线下方。

解题技巧总结

关键步骤:

  1. 制作表格:列出所有x和y值
  2. 计算h:h = (b-a)/n
  3. 应用公式:使用梯形法则公式
  4. 检查计算:确保计算正确
  5. 分析精度:考虑曲线形状对精度的影响